Description

If you are interested in Pythagoras's history and The Pythagorean Philosophy and his amazing discoveries in geometry with a detailed explanation, this collection will be useful for you

Study Set Content:
1- Page
background image

Pythagoras and the Pythagoreans

1

Historically, the name

Pythagoras

means much more than the

familiar namesake of the famous theorem about right triangles. The
philosophy of Pythagoras and his school has become a part of the very
fiber of mathematics, physics, and even the western tradition of liberal
education, no matter what the discipline.

The stamp above depicts a coin issued by Greece on August 20,

1955, to commemorate the 2500th anniversary of the founding of the
first school of philosophy by Pythagoras. Pythagorean philosophy was
the prime source of inspiration for Plato and Aristotle whose influence
on western thought is without question and is immeasurable.

1

c

°

G. Donald Allen, 1999

2- Page
background image

Pythagoras and the Pythagoreans

2

1

Pythagoras and the Pythagoreans

Of his life, little is known. Pythagoras (fl 580-500, BC) was born in
Samos on the western coast of what is now Turkey. He was reportedly
the son of a substantial citizen, Mnesarchos. He met Thales, likely as a
young man, who recommended he travel to Egypt. It seems certain that
he gained much of his knowledge from the Egyptians, as had Thales
before him. He had a reputation of having a wide range of knowledge
over many subjects, though to one author as having little wisdom (Her-
aclitus) and to another as profoundly wise (Empedocles). Like Thales,
there are no extant written works by Pythagoras or the Pythagoreans.
Our knowledge about the Pythagoreans comes from others, including
Aristotle, Theon of Smyrna, Plato, Herodotus, Philolaus of Tarentum,
and others.

Samos

Miletus

Cnidus

Pythagoras lived on Samos for many years under the rule of

the tyrant Polycrates, who had a tendency to switch alliances in times
of conflict — which were frequent. Probably because of continual
conflicts and strife in Samos, he settled in Croton, on the eastern coast
of Italy, a place of relative peace and safety. Even so, just as he arrived

3- Page
background image

Pythagoras and the Pythagoreans

3

in about 532 BCE, Croton lost a war to neighboring city Locri, but
soon thereafter defeated utterly the luxurious city of Sybaris. This is
where Pythagoras began his society.

2

The Pythagorean School

The school of Pythagoras was every bit as much a religion as a school
of mathematics. A rule of secrecy bound the members to the school,
and oral communication was the rule. The Pythagoreans had numerous
rules for everyday living. For example, here are a few of them:

To abstain from beans.

Not to pick up what has fallen.

Not to touch a white cock.

Not to stir the fire with iron.

...

Do not look in a mirror beside a light.

Vegetarianism was strictly practiced probably because Pythago-

ras preached the transmigration of souls

2

.

What is remarkable is that despite the lasting contributions of the

Pythagoreans to philosophy and mathematics, the school of Pythagoras
represents the

mystic tradition

in contrast with the scientific. Indeed,

Pythagoras regarded himself as a mystic and even

semi-divine

. Said

Pythagoras,

“There are men, gods, and men like Pythagoras.”

It is likely that Pythagoras was a charismatic, as well.

Life in the Pythagorean society was more-or-less egalitarian.

The Pythagorean school regarded men and women equally.

2

reincarnation

4- Page
background image

Pythagoras and the Pythagoreans

4

They enjoyed a common way of life.

Property was communal.

Even mathematical discoveries were communal and by association
attributed to Pythagoras himself — even from the grave. Hence,
exactly what Pythagoras personally discovered is difficult to as-
certain. Even Aristotle and those of his time were unable to at-
tribute direct contributions from Pythagoras, always referring to
‘the Pythagoreans’, or even the ‘so-called Pythagoreans’. Aristo-
tle, in fact, wrote the book

On the Pythagoreans

which is now

lost.

The Pythagorean Philosophy

The basis of the Pythagorean philosophy is simply stated:

“There are three kinds of men and three sorts of people

that attend the Olympic Games. The lowest class is made
up of those who come to buy and sell, the next above them
are those who compete. Best of all, however, are those who
come simply to look on. The greatest purification of all is,
therefore, disinterested science, and it is the man who devotes
himself to that, the true philosopher, who has most effectually
released himself from the ‘wheel of birth’.”

3

The message of this passage is radically in conflict with modern values.
We need only consider sports and politics.

?

Is not reverence these days is bestowed only on the “super-

stars”?

?

Are not there ubiquitous demands for

accountability

.

The

gentleman

4

, of this passage, has had a long run with this

philosophy, because he was associated with the Greek genius, because

3

Burnet,

Early Greek Philosophy

4

How many such philosophers are icons of the

western

tradition? We can include Hume,

Locke, Descartes, Fermat, Milton, G¨

othe, Thoreau. Compare these names to Napoleon, Nel-

son, Bismark, Edison, Whitney, James Watt. You get a di

erent feel.

5- Page
background image

Pythagoras and the Pythagoreans

5

the “virtue of contemplation” acquired theological endorsement, and
because the ideal of disinterested truth dignified the academic life.

The Pythagorean Philosophy ´ala Bertrand Russell

From Bertrand Russell,

5

, we have

“It is to this gentleman that we owe pure mathematics.

The contemplative ideal — since it led to pure mathematics
— was the source of a useful activity. This increased it’s
prestige and gave it a success in theology, in ethics, and in
philosophy.”

Mathematics, so honored, became the model for other sciences.

Thought

became superior to the senses;

intuition

became superior to

observation. The combination of mathematics and theology began with
Pythagoras. It characterized the religious philosophy in Greece, in the
Middle ages, and down through Kant. In Plato, Aquinas, Descartes,
Spinoza and Kant there is a blending of religion and reason, of moral
aspiration with logical admiration of what is timeless.

Platonism was essentially Pythagoreanism. The whole concept

of an eternal world revealed to intellect but not to the senses can be
attributed from the teachings of Pythagoras.

The Pythagorean School gained considerable influence in Croton

and became politically active — on the side of the aristocracy. Probably
because of this, after a time the citizens turned against him and his
followers, burning his house. Forced out, he moved to

Metapontum

,

also in Southern Italy. Here he died at the age of eighty. His school lived
on, alternating between decline and re-emergence, for several hundred
years. Tradition holds that Pythagoras left no written works, but that
his ideas were carried on by eager disciples.

5

A History of Western Philosophy.

Russell was a logician, mathematician and philosopher from

the

Þ

rst half of the twentieth century. He is known for attempting to bring pure mathematics

into the scope of symbolic logic and for discovering some profound paradoxes in set theory.

6- Page
background image

Pythagoras and the Pythagoreans

6

3

Pythagorean Mathematics

What is known of the Pythagorean school is substantially from a book
written by the Pythagorean,

Philolaus

(fl. c. 475 BCE) of Tarentum.

However, according to the 3rd-century-AD Greek historian Diogenes
La¨ertius, he was born at Croton. After the death of Pythagoras, dis-

sension was prevalent in Italian cities, Philolaus may have fled first to
Lucania and then to Thebes, in Greece. Later, upon returning to Italy,
he may have been a teacher of the Greek thinker Archytas. From his
book Plato learned the philosophy of Pythagoras.

The dictum of the Pythagorean school was

All is number

The origin of this model may have been in the study of the constella-
tions, where each constellation possessed a certain number of stars and
the geometrical figure which it forms. What this dictum meant was
that all things of the universe had a numerical attribute that uniquely
described them. Even stronger, it means that all things which can be
known or even conceived have number. Stronger still, not only do
all things possess numbers, but all things

are

numbers. As Aristotle

observes, the Pythagoreans regarded that number is both the princi-
ple matter for things and for constituting their attributes and permanent
states. There are of course logical problems, here. (Using a basis to de-
scribe the same basis is usually a risky venture.) That Pythagoras could
accomplish this came in part from further discoveries such musical har-
monics and knowledge about what are now called Pythagorean triples.
This is somewhat different from the Ionian school, where the elemental
force of nature was some physical quantity such as water or air. Here,
we see a model of the universe with number as its base, a rather abstract
philosophy.

Even qualities, states, and other aspects of nature had descriptive

numbers. For example,

The number

one

: the number of reason.

The number

two

: the first even or female number, the number of

opinion.

The number

three

: the first true male number, the number of

harmony.

7- Page
background image

Pythagoras and the Pythagoreans

7

The number

four

: the number of justice or retribution.

The number

five

: marriage.

The number

six

: creation

...

The number

ten

: the

tetractys

, the number of the universe.

The Pythagoreans expended great effort to form the numbers from

a single number, the Unit, (i.e. one). They treated the unit, which is a
point without position, as a point, and a point as a unit having position.
The unit was not originally considered a number, because a measure is
not the things measured, but the measure of the One is the beginning
of number.

6

This view is reflected in Euclid

7

where he refers to the

multitude as being comprised of units, and a unit is that by virtue of
which each of existing things is called one. The first definition of
number is attributed to Thales, who defined it as a collection of units,
clearly a derivate based on Egyptians arithmetic which was essentially
grouping. Numerous attempts were made throughout Greek history to
determine the root of numbers possessing some consistent and satisfying
philosophical basis. This argument could certainly qualify as one of the
earliest forms of the philosophy of mathematics.

The greatest of the numbers, ten, was so named for several rea-

sons. Certainly, it is the base of Egyptian and Greek counting. It also
contains the ratios of musical harmonies: 2:1 for the octave, 3:2 for the
fifth, and 4:3 for the fourth. We may also note the only regular figures
known at that time were the equilateral triangle, square, and pentagon

8

were also contained by within

tetractys

. Speusippus (d. 339 BCE)

notes the geometrical connection.

Dimension:

One point

: generator of dimensions (point).

Two points

: generator of a line of dimension one

6

Aristotle,

Metaphysics

7

The Elements

8

Others such as the hexagon, octagon, etc. are easily constructed regular polygons with

number of sides as multiples of these. The 15-

gon

, which is a multiple of three and

Þ

ve sides

is also constructible. These polygons and their side multiples by powers of two were all those
known.

8- Page
background image

Pythagoras and the Pythagoreans

8

Three points

: generator of a triangle of dimension two

Four points

: generator of a tetrahedron, of dimension three.

The sum of these is ten and represents all dimensions. Note the ab-
straction of concept. This is quite an intellectual distance from “fingers
and toes”.

Classification of numbers.

The distinction between even and odd

numbers certainly dates to Pythagoras. From Philolaus, we learn that

“...number is of two special kinds, odd and even, with a

third, even-odd, arising from a mixture of the two; and of
each kind there are many forms.”

And these, even and odd, correspond to the usual definitions, though
expressed in unusual way

9

. But

even-odd

means a product of two and

odd number, though later it is an even time an odd number. Other
subdivisions of even numbers

10

are reported by Nicomachus (a neo-

Pythagorean

100 A.D.).

even-even

2

n

even-odd

2(2

m

+ 1)

odd-even

2

n

+1

(2

m

+ 1)

Originally (our) number 2, the dyad, was not considered even,

though Aristotle refers to it as the only even prime. This particular
direction of mathematics, though it is based upon the earliest ideas
of factoring, was eventually abandoned as not useful, though even and
odd numbers and especially prime numbers play a major role in modern
number theory.

Prime

or

incomposite

numbers and

secondary

or

composite

numbers

are defined in Philolaus:

9

Nicomachus of Gerase (

ß

100 CE) gives as ancient the de

Þ

nition that an

even

number is

that which can be divided in to two equal parts and into two unequal part (except two), but
however divided the parts must be of the same type (i.e. both even or both odd).

10

Bear in mind that there is no zero extant at this time. Note, the “experimentation” with

de

Þ

nition. The same goes on today. De

Þ

nitions and directions of approach are in a continual

ß

ux, then and now.

9- Page
background image

Pythagoras and the Pythagoreans

9

A

prime

number is rectilinear, meaning that it can only be set out

in one dimension. The number 2 was not originally regarded as a
prime number, or even as a number at all.

A

composite

number is that which is measured by (has a factor)

some number. (Euclid)

Two numbers are

prime to one another

or

composite to one

another

if their greatest common divisor

11

is one or greater than

one, respectively. Again, as with even and odd numbers there were
numerous alternative classifications, which also failed to survive
as viable concepts.

12

For prime numbers, we have from Euclid the following theorem, whose
proof is considered by many mathematicians as the quintessentially most
elegant of all mathematical proofs.

Proposition.

There are an infinite number of primes.

Proof.

(Euclid) Suppose that there exist only finitely many primes

p

1

< p

2

< ... < p

r

. Let

N

= (

p

1

)(

p

2

)

...

(

p

r

)

>

2

. The integer

N

1

,

being a product of primes, has a prime divisor

p

i

in common with

N

;

so,

p

i

divides

N

(

N

1) = 1

, which is absurd!

The search for primes goes on.

Eratsothenes

(276 B.C. - 197 B.C.)

13

,

who worked in Alexandria, devised a

sieve

for determining primes.

This sieve is based on a simple concept:

Lay off all the numbers, then mark of all the multiples of 2, then

3, then 5, and so on. A prime is determined when a number is not
marked out. So, 3 is uncovered after the multiples of two are marked
out; 5 is uncovered after the multiples of two and three are marked out.
Although it is not possible to determine large primes in this fashion,
the sieve was used to determine early tables of primes. (This makes a
wonderful exercise in the discovery of primes for young students.)

11

in modern terms

12

We have

prime and incomposite

– ordinary primes excluding 2,

secondary and composite

– ordinary composite with prime factors only,

relatively prime

– two composite numbers but prime and incomposite to another num-

ber, e.g. 9 and 25. Actually the third category is wholly subsumed by the second.

13

Eratsothenes will be studied in somewhat more detail later, was gifted in almost every

intellectual endeavor.

His admirers call him the second Plato and some called him

beta

,

indicating that he was the second of the wise men of antiquity.

10- Page
background image

Pythagoras and the Pythagoreans

10

It is known that there is an infinite number of primes, but there

is no way to find them. For example, it was only at the end of the

19

th

century that results were obtained that describe the asymptotic density
of the primes among the integers. They are relatively sparce as the
following formula

The number of primes

n

n

ln

n

shows.

14

Called the Prime Number Theorem, this celebrated results

was not even conjectured in its correct form until the late

18

th

century

and its proof uses mathematical machinery well beyond the scope of
the entirety of ancient Greek mathematical knowledge. The history of
this theorem is interesting in its own right and we will consider it in a
later chapter. For now we continue with the Pythagorean story.

The pair of numbers

a

and

b

are called

amicable

or

friendly

if

the divisors of

a

sum to

b

and if the divisors of

b

sum to

a

. The pair

220 and 284, were known to the Greeks. Iamblichus (C.300 -C.350
CE) attributes this discovery to Pythagoras by way of the anecdote of
Pythagoras upon being asked ‘what is a friend’ answered ‘

Alter ego‘

,

and on this thought applied the term directly to numbers pairs such as
220 and 284. Among other things it is not known if there is infinite set
of amicable pairs. Example: All primes are deficient. More interesting
that amicable numbers are perfect numbers, those numbers amicable to
themselves. Mathematically, a number

n

is

perfect

if the sum of its

divisors is itself.

Examples: ( 6, 28, 496, 8128, ...)

6 = 1 + 2 + 3

28 = 1 + 2 + 4 + 7 + 14

496 = 1 + 2 + 4 + 8 + 16 + 31 + 62 + 124 + 248

There are no direct references to the Pythagorean study of these

numbers, but in the comments on the Pythagorean study of amicable
numbers, they were almost certainly studied as well. In Euclid, we find
the following proposition.

Theorem

. (Euclid) If

2

p

1

is prime, then

(2

p

1)2

p

1

is perfect.

Proof.

The proof is straight forward. Suppose

2

p

1

is prime. We

identify all the factors of

(2

p

1)2

p

1

. They are

14

This asymptotic result if also expressed as follows. Let

P

(

n

) = The number of primes

n

. Then lim

n

→∞

P

(

n

)

/

[

n

ln

n

] = 1.

11- Page
background image

Pythagoras and the Pythagoreans

11

1

,

2

,

4

, . . . ,

2

p

1

,

and

1

·

(2

p

1

1)

,

2

·

(2

p

1

1)

,

4

·

(2

p

1

1)

, , . . . ,

2

p

2

·

(2

p

1

1)

Adding we have

15

p

1

X

n

=0

2

n

+ (2

p

1

1)

p

2

X

n

=0

2

n

= 2

p

1 + (2

p

1)(2

p

1

1)

= (2

p

1)2

p

1

and the proof is complete.

(Try,

p

= 2

,

3

,

5

, and 7 to get the numbers above.) There is just

something about the word “perfect”. The search for perfect numbers
continues to this day. By Euclid’s theorem, this means the search is for
primes of the form

(2

p

1)

, where

p

is a prime. The story of and search

for perfect numbers is far from over. First of all, it is not known if there
are an infinite number of perfect numbers. However, as we shall soon
see, this hasn’t been for a lack of trying. Completing this concept of
describing of numbers according to the sum of their divisors, the number

a

is classified as

abundant

or

deficient

16

according as their divisors

sums greater or less than

a

, respectively. Example: The divisors of 12

are: 6,4,3,2,1 — Their sum is 16. So, 12 is abundant. Clearly all prime
numbers, with only one divisor (namely, 1) are deficient.

In about 1736, one of history’s greatest mathematicians, Leonhard

Euler (1707 - 1783) showed that all even perfect numbers must have the
form given in Euclid’s theorem. This theorem stated below is singularly
remarkable in that the individual contributions span more than two
millenia. Even more remarkable is that Euler’s proof could have been
discovered with known methods from the time of Euclid. The proof
below is particularly elementary.

Theorem

(Euclid - Euler) An even number is perfect if and only if it

has the form

(2

p

1)2

p

1

where

2

p

1

is prime.

Proof.

The sufficiency has been already proved. We turn to the neces-

sity. The slight change that Euler brings to the description of perfect
numbers is that he includes the number itself as a divisor. Thus a per-
fect is one whose divisors add to twice the number. We use this new
definition below. Suppose that

m

is an even perfect number. Factor

m

15

Recall, the geometric series

P

N
n

=0

r

n

=

r

N

+1

1

r

1

. This was also well known in antiquity

and is in Euclid,

The Elements

.

16

Other terms used were

over-perfect

and

defective

respectively for these concepts.

12- Page
background image

Pythagoras and the Pythagoreans

12

as

2

p

1

a

, where

a

is odd and of course

p >

1

. First, recall that the sum

of the factors of

2

p

1

, when

2

p

1

itself is included, is

(2

p

1)

Then

2

m

= 2

p

a

= (2

p

1)(

a

+

· · ·

+ 1)

where the term

· · ·

refers to the sum of all the other factors of

a

. Since

(2

p

1)

is odd and

2

p

is even, it follows that

(2

p

1)

|

a

, or

a

=

b

(2

p

1)

.

First assume

b >

1

. Substituting above we have

2

p

a

= 2

p

(2

p

1)

b

and

thus

2

p

(2

p

1)

b

= (2

p

1)((2

p

1)

b

+ (2

p

1) +

b

+

· · ·

+ 1)

= (2

p

1)(2

p

+ 2

p

b

+

· · ·

)

where the term

· · ·

refers to the sum of all other the factors of

a

. Cancel

the terms

(2

p

1)

. There results the equation

2

p

b

= 2

p

+ 2

p

b

+

· · ·

which is impossible. Thus

b

= 1

. To show that

(2

p

1)

is prime, we

write a similar equation as above

2

p

(2

p

1) = (2

p

1)((2

p

1) +

· · ·

+ 1)

= (2

p

1)(2

p

+

· · ·

)

where the term

· · ·

refers to the sum of all other the factors of

(2

p

1)

.

Now cancel

(2

p

1)

. This gives

2

p

= (2

p

+

· · ·

)

If there are any other factors of

(2

p

1)

, this equation is impossible.

Thus,

(2

p

1)

is prime, and the proof is complete.

4

The Primal Challenge

The search for large primes goes on. Prime numbers are so fundamental
and so interesting that mathematicians, amateur and professional, have
been studying their properties ever since. Of course, to determine if a
given number

n

is prime, it is necessary only to check for divisibility by

a prime up to

n

. (Why?) However, finding large primes in this way

is nonetheless impractical

17

In this short section, we depart history and

17

The current record for largest prime has more than a million digits. The square root of

any test prime then has more than 500,000 digits. Testing a million digit number against all
such primes less than this is certainly impossible.

13- Page
background image

Pythagoras and the Pythagoreans

13

take a short detour to detail some of the modern methods employed in
the search. Though this is a departure from ancient Greek mathematics,
the contrast and similarity between then and now is remarkable. Just
the fact of finding perfect numbers using the previous propositions has
spawned a cottage industry of determining those numbers

p

for which

2

p

1

is prime. We call a prime number a

Mersenne Prime

if it has the

form

2

p

1

for some positive integer

p

. Named after the friar

Marin

Mersenne

(1588 - 1648), an active mathematician and contemporary

of Fermat, Mersenne primes are among the largest primes known today.
So far 38 have been found, though it is unknown if there are others
between the 36th and 38th. It is not known if there are an infinity of
Mersenne primes. From Euclid’s theorem above, we also know exactly
38 perfect numbers. It is relatively routine to show that if

2

p

1

is

prime, then so also is

p

.

18

Thus the known primes, say to more than

ten digits, can be used to search for primes of millions of digits.

Below you will find complete list of Mersenne primes as of January,
1998. A special method, called the

Lucas-Lehmer

test has been devel-

oped to check the primality the Mersenne numbers.

18

If

p

=

rs

, then 2

p

1 = 2

rs

1 = (2

r

)

s

1 = (2

r

1)((2

r

)

s

1

+ (2

r

)

s

2

· · ·

+ 1)

14- Page
background image

Pythagoras and the Pythagoreans

14

Number

Prime

Digits

Mp

Year

Discoverer

(exponent)

1

2

1

1

Ancient

2

3

1

2

Ancient

3

5

2

3

Ancient

4

7

3

4

Ancient

5

13

4

8 1456 anonymous

6

17

6

10 1588 Cataldi

7

19

6

12 1588 Cataldi

8

31

10

19 1772 Euler

9

61

19

37 1883 Pervushin

10

89

27

54 1911 Powers

11

107

33

65 1914 Powers

12

127

39

77 1876 Lucas

13

521

157

314 1952 Robinson

14

607

183

366 1952 Robinson

15

1279

386

770 1952 Robinson

16

2203

664

1327 1952 Robinson

17

2281

687

1373 1952 Robinson

18

3217

969

1937 1957 Riesel

19

4253

1281

2561 1961 Hurwitz

20

4423

1332

2663 1961 Hurwitz

21

9689

2917

5834 1963 Gillies

22

9941

2993

5985 1963 Gillies

23

11213

3376

6751 1963 Gillies

24

19937

6002

12003 1971 Tuckerman

25

21701

6533

13066 1978 Noll - Nickel

26

23209

6987

13973 1979 Noll

27

44497

13395

26790 1979 Nelson - Slowinski

28

86243

25962

51924 1982 Slowinski

29

110503

33265

66530 1988 Colquitt - Welsh

30

132049

39751

79502 1983 Slowinski

31

216091

65050

130100 1985 Slowinski

32

756839

227832

455663 1992 Slowinski & Gage

33

859433

258716

517430 1994 Slowinski & Gage

34

1257787

378632

757263 1996 Slowinski & Gage

35

1398269

420921

841842 1996 Armengaud, Woltman,

??

2976221

895932 1791864 1997 Spence, Woltman,

??

3021377

909526 1819050 1998 Clarkson, Woltman, Kurowski

??

26972593 2098960

1999 Hajratwala, Kurowski

?? 213466917 4053946

2001 Cameron, Kurowski

15- Page
background image

Pythagoras and the Pythagoreans

15

What about odd perfect numbers? As we have seen Euler char-

acterized all even perfect numbers. But nothing is known about odd
perfect numbers except these few facts:

If

n

is an odd perfect number, then it must have the form

n

=

q

2

·

p

2

k

+1

,

where

p

is prime,

q

is an odd integer and k is a nonnegative integer.

It has at least 8 different prime factors and at least 29 prime factors.

It has at least 300 decimal digits.

Truly a challenge, finding an odd perfect number, or proving there are
none will resolve the one of the last open problems considered by the
Greeks.

5

Figurate Numbers.

Numbers geometrically constructed had a particular importance to the
Pythagoreans.

Triangular numbers.

These numbers are 1, 3, 6, 10, ... . The

general form is the familiar

1 + 2 + 3 +

. . .

+

n

=

n

(

n

+ 1)

2

.

Triangular Numbers

16- Page
background image

Pythagoras and the Pythagoreans

16

Square numbers

These numbers are clearly the squares of the integers

1, 4, 9, 16, and so on. Represented by a square of dots, they prove(?)
the well known formula

1 + 3 + 5 +

. . .

+ (2

n

1) =

n

2

.

1

2

3

4

5

6

1

3

5

7

9

11

Square Numbers

The

gnomon

is basically an architect’s template that marks off

”similar” shapes. Originally introduced to Greece by Anaximander,
it was a Babylonian astronomical instrument for the measurement of
time. It was made of an upright stick which cast shadows on a plane
or hemispherical surface. It was also used as an instrument to measure
right angles, like a modern carpenter’s square. Note the

gnomon

has

been placed so that at each step, the next odd number of dots is placed.
The

pentagonal

and

hexagonal

numbers are shown in the below.

Pentagonal Numbers

Hexagonal Numbers

Figurate Numbers of any kind can be calculated. Note that the se-

17- Page
background image

Pythagoras and the Pythagoreans

17

quences have sums given by

1 + 4 + 7 +

. . .

+ (3

n

2) =

3
2

n

2

1
2

n

and

1 + 5 + 9 +

. . .

+ (4

n

3) = 2

n

2

n.

Similarly, polygonal numbers of all orders are designated; this

process can be extended to three dimensional space, where there results
the

polyhedral numbers

. Philolaus is reported to have said:

All things which can be known have number; for it is not

possible that without number anything can be either con-
ceived or known.

6

Pythagorean Geometry

6.1

Pythagorean Triples and The Pythagorean Theorem

Whether Pythagoras learned about the 3, 4, 5 right triangle while he
studied in Egypt or not, he was certainly aware of it. This fact though
could not but strengthen his conviction that

all is number

. It would

also have led to his attempt to find other forms, i.e. triples. How might
he have done this?

One place to start would be with the square numbers, and arrange

that three consecutive numbers be a Pythagorean triple! Consider for
any odd number

m

,

m

2

+ (

m

2

1

2

)

2

= (

m

2

+ 1

2

)

2

which is the same as

m

2

+

m

4

4

m

2

2

+

1
4

=

m

4

4

+

m

2

2

+

1
4

or

m

2

=

m

2

18- Page
background image

Pythagoras and the Pythagoreans

18

Now use the gnomon. Begin by placing the gnomon around

n

2

.

The next number is

2

n

+ 1

, which we suppose to be a square.

2

n

+ 1 =

m

2

,

which implies

n

=

1
2

(

m

2

1)

,

and therefore

n

+ 1 =

1
2

(

m

2

+ 1)

.

It follows that

m

2

+

m

4

4

m

2

2

+

1
4

=

m

4

4

+

m

2

2

+

1
4

This idea evolved over the years and took other forms. The essential fact
is that the Pythagoreans were clearly aware of the Pythagorean theorem

Did Pythagoras or the Pythagoreans actually prove the Pythagorean the-

orem? (See the statement below.) Later writers that attribute the proof
to him add the tale that he sacrificed an ox to celebrate the discovery.
Yet, it may have been Pythagoras’s religious mysticism may have pre-
vented such an act. What is certain is that Pythagorean triples were
known a millennium before Pythagoras lived, and it is likely that the
Egyptian, Babylonian, Chinese, and India cultures all had some “proto-
proof”, i.e. justification, for its truth. The proof question remains.

No doubt, the earliest “proofs” were arguments that would not

satisfy the level of rigor of later times. Proofs were refined and retuned
repeatedly until the current form was achieved. Mathematics is full of
arguments of various theorems that satisfied the rigor of the day and
were later replaced by more and more rigorous versions.

19

However,

probably the Pythagoreans attempted to give a proof which was up
to the rigor of the time. Since the Pythagoreans valued the idea of
proportion, it is plausible that the Pythagoreans gave a proof based on
proportion similar to Euclid’s proof of Theorem 31 in Book VI of

The

Elements

. The late Pythagoreans (

e

400 BCE) however probably did

supply a rigorous proof of this most famous of theorems.

19

One of the most striking examples of this is the Fundamental Theorem of Algebra, which

asserts the existence of at least one root to any polynomial. Many proofs, even one by Euler,
passed the test of rigor at the time, but it was Carl Friedrich Gauss (1775 - 1855) that gave
us the

Þ

rst proof that measures up to modern standards of rigor.

19- Page
background image

Pythagoras and the Pythagoreans

19

There are numerous proofs, more than 300 by one count, in the

literature today, and some of them are easy to follow. We present three
of them. The first is a simple appearing proof that establishes the
theorem by visual diagram. To “rigorize” this theorem takes more than
just the picture. It requires knowledge about the similarity of figures,
and the Pythagoreans had only a limited theory of similarity.

(

a

+

b

)

2

=

c

2

+ 4(

1
2

ab

)

a

2

+ 2

ab

+

b

2

=

c

2

+ 2

ab

a

2

+

b

2

=

c

2

b

a

b

a

b

a

b

a

c

c

c

c

This proof is based upon Books I and
II of Euclid’s

Elements

, and is sup-

posed to come from the figure to the
right. Euclid allows the decomposi-
tion of the square into the two boxes
and two rectangles. The rectangles
are cut into the four triangles shown
in the figure.

b

a

b

a

b

a

b

a

Then the triangle are reassembled into the first figure.

The next proof is based on similarity and proportion and is a

special case of Theorem 31 in Book VI of

The Elements

. Consider the

figure below.

20- Page
background image

Pythagoras and the Pythagoreans

20

A

B

C

D

If

ABC

is a right triangle, with right angle at

A

, and

AD

is perpen-

dicular to

BC

, then the triangles

DBA

and

DAC

are similar to

ABC

.

Applying the proportionality of sides we have

|

BA

|

2

=

|

BD

| |

BC

|

|

AC

|

2

=

|

CD

| |

BC

|

It follows that

|

BA

|

2

+

|

AC

|

2

=

|

BC

|

2

Finally we state and prove what is now called the Pythagorean Theorem
as it appears in Euclid

The Elements

.

Theorem I-47

. In right-angled triangles, the square upon the hy-

potenuse is equal to the sum of the squares upon the legs.

A

C

B

D

E

L

M

N

G

Pythagorean Theorem

Proof requirements:

   SAS congruence,

   Triangle area =

/2

         = base

        = height

 hb

b

 h

thumb_up_alt Subscribers
layers 36 Items
folder Math Category
0.00
0 Reviews
Share It Now!